Definition 3.1.1. Vector space.
A (real) vector space is a set \(V\) together with two operations, scalar multiplication and vector addition, described in detail below.
- Scalar multiplication
- This operation takes as input any real number \(c\in R\) and any element \(\boldv\in V\text{,}\) and outputs another element of \(V\text{,}\) denoted \(c\boldv\text{.}\) We describe this operation using function notation as follows:\begin{align*} \R\times V\amp \rightarrow V\\ (c,\boldv)\amp \mapsto c\boldv\text{.} \end{align*}
- Vector addition
- This operation takes as input any pair of elements \(\boldv, \boldw\in V\) and returns another element of \(V\text{,}\) denoted \(\boldv+\boldw\text{.}\) In function notation:\begin{align*} V\times V\amp \rightarrow V\\ (\boldv,\boldw)\amp \mapsto \boldv+\boldw\text{.} \end{align*}
Furthermore, these two operations must satisfy the following list of axioms.
-
Vector addition is commutative.For all \(\boldv, \boldw\in V\text{,}\) we have\begin{equation*} \boldv+\boldw=\boldw+\boldv\text{.} \end{equation*}
-
Vector addition is associative.For all \(\boldu, \boldv, \boldw\in V\text{,}\) we have\begin{equation*} (\boldu+\boldv)+\boldw=\boldu+(\boldv+\boldw)\text{.} \end{equation*}
-
Existence of additive identity.There is an element \(\boldzero\in V\) such that for all \(\boldv\in V\text{,}\) we have\begin{equation*} \boldzero+\boldv=\boldv+\boldzero=\boldv\text{.} \end{equation*}The element \(\boldzero\) is called the zero vector of \(V\).
-
Existence of additive inverses.For all \(\boldv\in V\text{,}\) there is another element \(-\boldv\) satisfying\begin{equation*} -\boldv+\boldv=\boldv+(-\boldv)=\boldzero\text{.} \end{equation*}Given \(\boldv\in V\text{,}\) the element \(-\boldv\) is called the vector inverse of \(\boldv\).
-
Distribution over vector addition.For all \(c\in \R\) and \(\boldv, \boldw\in V\text{,}\) we have\begin{equation*} c(\boldv+\boldw)=c\boldv+c\boldw\text{.} \end{equation*}
-
Distribution over scalar addition.For all \(c, d\in \R\) and \(\boldv\in V\text{,}\) we have\begin{equation*} (c+d)\boldv=c\boldv+d\boldv \end{equation*}
-
Scalar multiplication is associative.For all \(c,d\in \R\) and all \(\boldv\in V\text{,}\) we have\begin{equation*} c(d\boldv)=(cd)\boldv\text{.} \end{equation*}
-
Scalar multiplicative identity.For all \(\boldv\in V\text{,}\) we have\begin{equation*} 1\boldv=\boldv\text{.} \end{equation*}
We call the elements of a vector space vectors.