To compute \([(3,3)]_B\) we must find the unique pair \((c_1, c_2)\) satisfying
\begin{equation*}
(3,3)=c_1(1,2)+c_2(1,1)\text{.}
\end{equation*}
By inspection, we see that
\begin{equation*}
(3,3)=3(1,1)=0(1,2)+3(1,1)\text{.}
\end{equation*}
We conclude that
\begin{equation*}
[\boldv]_{B}=(0,3)\text{.}
\end{equation*}
More generally, to compute \([\boldv]_B\) for an arbitrary \(\boldv=(a,b)\in \R^2\text{,}\) we must find the pair \((c_1,c_2)\) satisfying \((a,b)=c_1(1,2)+c_2(1,1)\text{,}\) or equivalently
\begin{equation*}
\begin{linsys}{2}
c_1\amp +\amp c_2 \amp =\amp a\\
2c_1\amp +\amp c_2\amp =\amp b
\end{linsys}\text{.}
\end{equation*}
The usual techniques yield the unique solution \((c_1,c_2)=(-a+b,2a-b)\text{,}\) and thus
\begin{equation*}
[\boldv]_B=(-a+b, 2a-b)
\end{equation*}
for \(\boldv=(a,b)\text{.}\)