Skip to main content\(\require{cancel}\newcommand{\Z}{{\mathbb Z}}
\newcommand{\Q}{{\mathbb Q}}
\newcommand{\R}{{\mathbb R}}
\newcommand{\C}{{\mathbb C}}
\newcommand{\T}{{\mathbb T}}
\newcommand{\F}{{\mathbb F}}
\newcommand{\HH}{{\mathbb H}}
\newcommand{\compose}{\circ}
\newcommand{\bolda}{{\mathbf a}}
\newcommand{\boldb}{{\mathbf b}}
\newcommand{\boldc}{{\mathbf c}}
\newcommand{\boldd}{{\mathbf d}}
\newcommand{\bolde}{{\mathbf e}}
\newcommand{\boldi}{{\mathbf i}}
\newcommand{\boldj}{{\mathbf j}}
\newcommand{\boldk}{{\mathbf k}}
\newcommand{\boldn}{{\mathbf n}}
\newcommand{\boldp}{{\mathbf p}}
\newcommand{\boldq}{{\mathbf q}}
\newcommand{\boldr}{{\mathbf r}}
\newcommand{\bolds}{{\mathbf s}}
\newcommand{\boldt}{{\mathbf t}}
\newcommand{\boldu}{{\mathbf u}}
\newcommand{\boldv}{{\mathbf v}}
\newcommand{\boldw}{{\mathbf w}}
\newcommand{\boldx}{{\mathbf x}}
\newcommand{\boldy}{{\mathbf y}}
\newcommand{\boldz}{{\mathbf z}}
\newcommand{\boldzero}{{\mathbf 0}}
\newcommand{\boldmod}{\boldsymbol{ \bmod }}
\newcommand{\boldT}{{\mathbf T}}
\newcommand{\boldN}{{\mathbf N}}
\newcommand{\boldB}{{\mathbf B}}
\newcommand{\boldF}{{\mathbf F}}
\newcommand{\boldS}{{\mathbf S}}
\newcommand{\boldG}{{\mathbf G}}
\newcommand{\boldK}{{\mathbf K}}
\newcommand{\boldL}{{\mathbf L}}
\DeclareMathOperator{\lcm}{lcm}
\DeclareMathOperator{\Span}{span}
\DeclareMathOperator{\tr}{tr}
\DeclareMathOperator{\NS}{null}
\DeclareMathOperator{\RS}{row}
\DeclareMathOperator{\CS}{col}
\DeclareMathOperator{\im}{im}
\DeclareMathOperator{\range}{range}
\DeclareMathOperator{\rank}{rank}
\DeclareMathOperator{\nullity}{nullity}
\DeclareMathOperator{\sign}{sign}
\DeclareMathOperator{\Fix}{Fix}
\DeclareMathOperator{\Aff}{Aff}
\DeclareMathOperator{\Frac}{Frac}
\DeclareMathOperator{\Ann}{Ann}
\DeclareMathOperator{\Tor}{Tor}
\DeclareMathOperator{\id}{id}
\DeclareMathOperator{\mdeg}{mdeg}
\DeclareMathOperator{\Lt}{Lt}
\DeclareMathOperator{\Lc}{Lc}
\DeclareMathOperator{\disc}{disc}
\DeclareMathOperator{\Frob}{Frob}
\DeclareMathOperator{\adj}{adj}
\DeclareMathOperator{\curl}{curl}
\DeclareMathOperator{\grad}{grad}
\DeclareMathOperator{\diver}{div}
\DeclareMathOperator{\flux}{flux}
\def\Gal{\operatorname{Gal}}
\def\ord{\operatorname{ord}}
\def\ML{\operatorname{M}}
\def\GL{\operatorname{GL}}
\def\PGL{\operatorname{PGL}}
\def\SL{\operatorname{SL}}
\def\PSL{\operatorname{PSL}}
\def\GSp{\operatorname{GSp}}
\def\PGSp{\operatorname{PGSp}}
\def\Sp{\operatorname{Sp}}
\def\PSp{\operatorname{PSp}}
\def\Aut{\operatorname{Aut}}
\def\Inn{\operatorname{Inn}}
\def\Hom{\operatorname{Hom}}
\def\End{\operatorname{End}}
\def\ch{\operatorname{char}}
\def\Zp{\Z/p\Z}
\def\Zm{\Z/m\Z}
\def\Zn{\Z/n\Z}
\def\Fp{\F_p}
\newcommand{\surjects}{\twoheadrightarrow}
\newcommand{\injects}{\hookrightarrow}
\newcommand{\bijects}{\leftrightarrow}
\newcommand{\isomto}{\overset{\sim}{\rightarrow}}
\newcommand{\floor}[1]{\lfloor#1\rfloor}
\newcommand{\ceiling}[1]{\left\lceil#1\right\rceil}
\newcommand{\mclass}[2][m]{[#2]_{#1}}
\newcommand{\val}[2][]{\left\lvert #2\right\rvert_{#1}}
\newcommand{\abs}[2][]{\left\lvert #2\right\rvert_{#1}}
\newcommand{\valuation}[2][]{\left\lvert #2\right\rvert_{#1}}
\newcommand{\norm}[1]{\left\lVert#1\right\rVert}
\newcommand{\anpoly}{a_nx^n+a_{n-1}x^{n-1}\cdots +a_1x+a_0}
\newcommand{\anmonic}{x^n+a_{n-1}x^{n-1}\cdots +a_1x+a_0}
\newcommand{\bmpoly}{b_mx^m+b_{m-1}x^{m-1}\cdots +b_1x+b_0}
\newcommand{\bnpoly}{b_nx^n+b_{n-1}x^{n-1}\cdots +b_1x+b_0}
\newcommand{\pder}[2]{\frac{\partial#1}{\partial#2}}
\newcommand{\normalin}{\trianglelefteq}
\newcommand{\angvec}[1]{\langle #1\rangle}
\newcommand{\varpoly}[2]{#1_{#2}x^{#2}+#1_{#2-1}x^{#2-1}\cdots +#1_1x+#1_0}
\newcommand{\varpower}[1][a]{#1_0+#1_1x+#1_1x^2+\cdots}
\newcommand{\limasto}[2][x]{\lim_{#1\rightarrow #2}}
\def\ntoinfty{\lim_{n\rightarrow\infty}}
\def\xtoinfty{\lim_{x\rightarrow\infty}}
\def\ii{\item}
\def\bb{\begin{enumerate}}
\def\ee{\end{enumerate}}
\def\ds{\displaystyle}
\def\p{\partial}
\newcommand{\abcdmatrix}[4]{\begin{bmatrix}#1\amp #2\\ #3\amp #4 \end{bmatrix}
}
\newenvironment{amatrix}[1][ccc|c]{\left[\begin{array}{#1}}{\end{array}\right]}
\newenvironment{linsys}[2][m]{
\begin{array}[#1]{@{}*{#2}{rc}r@{}}
}{
\end{array}}
\newcommand{\eqsys}{\begin{array}{rcrcrcr}
a_{11}x_{1}\amp +\amp a_{12}x_{2}\amp +\cdots+\amp  a_{1n}x_{n}\amp =\amp b_1\\
a_{21}x_{1}\amp +\amp a_{22}x_{2}\amp +\cdots+\amp a_{2n}x_{n}\amp =\amp b_2\\
\amp \vdots\amp   \amp \vdots \amp  \amp \vdots \amp  \\
a_{m1}x_{1}\amp +\amp a_{m2}x_{2}\amp +\cdots +\amp a_{mn}x_{n}\amp =\amp b_m
\end{array}
}
\newcommand{\numeqsys}{\begin{array}{rrcrcrcr}
e_1:\amp  a_{11}x_{1}\amp +\amp a_{12}x_{2}\amp +\cdots+\amp  a_{1n}x_{n}\amp =\amp b_1\\
e_2: \amp a_{21}x_{1}\amp +\amp a_{22}x_{2}\amp +\cdots+\amp a_{2n}x_{n}\amp =\amp b_2\\
\amp \vdots\amp   \amp \vdots \amp  \amp \vdots \amp  \\
e_m: \amp a_{m1}x_{1}\amp +\amp a_{m2}x_{2}\amp +\cdots +\amp a_{mn}x_{n}\amp =\amp b_m
\end{array}
}
\newcommand{\homsys}{\begin{array}{rcrcrcr}
a_{11}x_{1}\amp +\amp a_{12}x_{2}\amp +\cdots+\amp  a_{1n}x_{n}\amp =\amp 0\\
a_{21}x_{1}\amp +\amp a_{22}x_{2}\amp +\cdots+\amp a_{2n}x_{n}\amp =\amp 0\\
\amp \vdots\amp   \amp \vdots \amp  \amp \vdots \amp \\
a_{m1}x_{1}\amp +\amp a_{m2}x_{2}\amp +\cdots +\amp a_{mn}x_{n}\amp =\amp 0
\end{array}
}
\newcommand{\vareqsys}[4]{
\begin{array}{ccccccc}
#3_{11}x_{1}\amp +\amp #3_{12}x_{2}\amp +\cdots+\amp  #3_{1#2}x_{#2}\amp =\amp #4_1\\
#3_{21}x_{1}\amp +\amp #3_{22}x_{2}\amp +\cdots+\amp #3_{2#2}x_{#2}\amp =\amp #4_2\\
\vdots \amp \amp \vdots \amp  \amp \vdots \amp =\amp  \\
#3_{#1 1}x_{1}\amp +\amp #3_{#1 2}x_{2}\amp +\cdots +\amp #3_{#1 #2}x_{#2}\amp =\amp #4_{#1}
\end{array}
}
\newcommand{\genmatrix}[1][a]{
\begin{bmatrix}
#1_{11} \amp  #1_{12} \amp  \cdots \amp  #1_{1n} \\
#1_{21} \amp  #1_{22} \amp  \cdots \amp  #1_{2n} \\
\vdots  \amp  \vdots  \amp  \ddots \amp  \vdots  \\
#1_{m1} \amp  #1_{m2} \amp  \cdots \amp  #1_{mn}
\end{bmatrix}
}
\newcommand{\varmatrix}[3]{
\begin{bmatrix}
#3_{11} \amp  #3_{12} \amp  \cdots \amp  #3_{1#2} \\
#3_{21} \amp  #3_{22} \amp  \cdots \amp  #3_{2#2} \\
\vdots  \amp  \vdots  \amp  \ddots \amp  \vdots  \\
#3_{#1 1} \amp  #3_{#1 2} \amp  \cdots \amp  #3_{#1 #2}
\end{bmatrix}
}
\newcommand{\augmatrix}{
\begin{amatrix}[cccc|c]
a_{11} \amp  a_{12} \amp  \cdots \amp  a_{1n} \amp b_{1}\\
a_{21} \amp  a_{22} \amp  \cdots \amp  a_{2n} \amp b_{2}\\
\vdots  \amp  \vdots  \amp  \ddots \amp  \vdots  \amp \vdots\\
a_{m1} \amp  a_{m2} \amp  \cdots \amp  a_{mn}\amp b_{m}
\end{amatrix}
}
\newcommand{\varaugmatrix}[4]{
\begin{amatrix}[cccc|c]
#3_{11} \amp  #3_{12} \amp  \cdots \amp  #3_{1#2} \amp #4_{1}\\
#3_{21} \amp  #3_{22} \amp  \cdots \amp  #3_{2#2} \amp #4_{2}\\
\vdots  \amp  \vdots  \amp  \ddots \amp  \vdots  \amp \vdots\\
#3_{#1 1} \amp  #3_{#1 2} \amp  \cdots \amp  #3_{#1 #2}\amp #4_{#1}
\end{amatrix}
}
\newcommand{\spaceforemptycolumn}{\makebox[\wd\boxofmathplus]{\ }}
\newcommand{\generalmatrix}[3]{
\left(
\begin{array}{cccc}
#1_{1,1}  \amp #1_{1,2}  \amp \ldots  \amp #1_{1,#2}  \\
#1_{2,1}  \amp #1_{2,2}  \amp \ldots  \amp #1_{2,#2}  \\
\amp \vdots                         \\
#1_{#3,1} \amp #1_{#3,2} \amp \ldots  \amp #1_{#3,#2}
\end{array}
\right)  }
\newcommand{\colvec}[2][c]{\begin{amatrix}[#1] #2 \end{amatrix}}
\DeclareMathOperator{\size}{size}
\DeclareMathOperator{\adjoint}{adj}
\DeclareMathOperator{\sgn}{sgn}
\newcommand{\restrictionmap}[2]{{#1}\mathpunct\upharpoonright\hbox{}_{#2}}
\renewcommand{\emptyset}{\varnothing}
\newcommand{\proj}[2]{\mbox{proj}_{#2}({#1}) }
\renewcommand{\Re}{\operatorname{Re}}
 \renewcommand{\Im}{\operatorname{Im}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle     \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle        \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle      \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Appendix A Notation
| Symbol | Description | Location | 
| \(x\in A\) | set membership | Definition 0.1.1 | 
| \(A\subseteq B\) | set inclusion | Definition 0.1.3 | 
| \(A\cup B\) | set union | Definition 0.1.8 | 
| \(A^c\) | set complement | Definition 0.1.8 | 
| \(A\cap B\) | set intersection | Definition 0.1.8 | 
| \(A-B\) | set difference | Definition 0.1.8 | 
| \(\{\ \}, \emptyset\) | the empty set | Definition 0.1.9 | 
| \(\mathbb{R}\) | the real numbers | Definition 0.1.9 | 
| \(\mathbb{Z}\) | the integers | Definition 0.1.9 | 
| \(\mathbb{Q}\) | the rational numbers | Definition 0.1.9 | 
| \(f\colon A\rightarrow B\) | a function from \(A\) to \(B\) | Definition 0.2.1 | 
| \(f(A)\) | image of the set \(A\) under \(f\) | Definition 0.2.6 | 
| \(\operatorname{im} f\) | image of a function \(f\) | Definition 0.2.6 | 
| \(f\circ g\) | the composition of \(f\) and \(g\) | Definition 0.2.9 | 
| \((a_1,a_2,\dots, a_n)\) | \(I\)-tuple | Definition 0.3.1 | 
| \(A_1\times A_2\times \cdots A_n\) | Cartesian product | Definition 0.3.4 | 
| \(\boldx=(x_i)_{i\in I}\) | \(I\)-tuple | Definition 0.3.5 | 
| \(\prod_{i\in I}A_i\) | Cartesian product of the sets \(A_i\) | Definition 0.3.6 | 
| \(\C\) | the complex numbers | Definition 0.6.1 | 
| \(\Re z\) | real part of complex number \(z\) | Definition 0.6.1 | 
| \(\Im z\) | imaginary part of complex number \(z\) | Definition 0.6.1 | 
| \(\C\) | complex numbers | Definition 0.6.1 | 
| \(\deg f\) | degree of polynomial \(f\) | Definition 0.7.5 | 
| \(\begin{amatrix}[c|c]A\amp \mathbb{b}\end{amatrix}\) | augmented matrix | Definition 1.2.1 | 
| \(A\xrightarrow{c\,r_i} B\) | scalar multiplication | Remark 1.2.6 | 
| \(A\xrightarrow{r_i\leftrightarrow r_j} B\) | row swap | Remark 1.2.6 | 
| \(A\xrightarrow{r_i+c\,r_j} B\) | replace \(r_i\) with \(r_i+c\,r_j\) | Remark 1.2.6 | 
| \([a_{ij}]_{m\times n}\) | Matrix whose \(ij\)-th entry is \(a_{ij}\) | Definition 2.1.3 | 
| \((A)_{ij}\) | \(ij\)-th entry of the matrix \(A\) | Definition 2.1.3 | 
| \(\boldzero_{m\times n}\) | the \(m\times n\) zero matrix | Definition 2.1.7 | 
| \(\boldx\cdot\boldy\) | dot product | Definition 2.1.21 | 
| \(-A\) | Additive inverse of \(A\) | Definition 2.2.2 | 
| \(I\) | inverse matrix | Definition 2.2.3 | 
| \(A^{-1}\) | inverse of \(A\) | Definition 2.3.1 | 
| \(A^r\) | matrix power | Definition 2.3.9 | 
| \(f(A)\) | matrix polynomial | Definition 2.3.10 | 
| \(\underset{cr_i}{E}\) | Scaling elementary matrix | Definition 2.4.1 | 
| \(\underset{r_i\leftrightarrow r_j}{E}\) | Row swap elementary matrix | Definition 2.4.1 | 
| \(\underset{r_i+c\,r_j}{E}\) | Row addition elementary matrix | Definition 2.4.1 | 
| \(A_{ij}\) | submatrix of \(A\) | Definition 2.5.1 | 
| \(\det A\) | determinant of \(A\) | Definition 2.5.3 | 
| \(M_{ij}\) | the \(ij\)-th minor of a matrix | Definition 2.5.7 | 
| \(\adj A\) | adjoint of a square matrix | Definition 2.5.15 | 
| \(M_{mn}\) | vector space of \(m\times n\) matrices | Definition 3.1.3 | 
| \(\R^n\) | vector space of \(n\)-tuples | Definition 3.1.4 | 
| \(\{\boldzero\}\) | the zero vector space | Definition 3.1.6 | 
| \(\R^\infty\) | the vector space of infinite real sequences | Definition 3.1.7 | 
| \(F(X,\R)\) | vector space of functions from \(X\) to \(\R\) | Definition 3.1.8 | 
| \(\R_{>0}\) | vector space of positive real numbers | Definition 3.1.10 | 
| \(T_A\) | the matrix transformation associated to \(A\) | Definition 3.2.8 | 
| \(\rho_\alpha\) | rotation by \(\alpha\) in the plane | Definition 3.2.12 | 
| \(\tr A\) | the trace of \(A\) | Definition 3.3.15 | 
| \(\NS A\) | the null space of \(A\) | Definition 3.4.5 | 
| \(\Span S\) | the span of \(S\) | Definition 3.5.1 | 
| \(\val{X}\) | the cardinality of the set \(X\) | Definition 3.7.1 | 
| \(\dim V\) | dimension of \(V\) | Definition 3.7.4 | 
| \(\rank T\) | the rank of \(T\) | Definition 3.8.1 | 
| \(\nullity T\) | the nullity of \(T\) | Definition 3.8.1 | 
| \(\NS A\) | the null space of matrix \(A\) | Definition 3.8.5 | 
| \(\RS A\) | the row space of a matrix \(A\) | Definition 3.8.5 | 
| \(\CS A\) | the column space of a matrix \(A\) | Definition 3.8.5 | 
| \(\rank A\) | the rank of a matrix \(A\) | Definition 3.8.5 | 
| \(\nullity A\) | the nullity of a matrix \(A\) | Definition 3.8.5 | 
| \(\norm{\boldv}\) | norm of \(\boldv\) | Definition 4.1.14 | 
| \(d(\boldv, \boldw)\) | the distance between \(\boldv\) and \(\boldw\) | Definition 4.1.20 | 
| \(W^\perp\) | the orthogonal complement of \(W\) | Definition 4.3.1 | 
| \(\underset{B\rightarrow B'}{P}\) | change of basis matrix | Definition 5.3.1 |