Definition 4.1.1. Inner product.
Let \(V\) be a vector space. An inner product on \(V\) is an operation that takes as input a pair of vectors \(\boldv, \boldw\in V\) and outputs a scalar \(\langle \boldv, \boldw \rangle \in \R\text{.}\) Using function notation:
\begin{align*}
\langle \ , \rangle \colon \amp V\times V\rightarrow \R\\
(\boldv_1,\boldv_2)\amp \mapsto \langle \boldv_1,\boldv_2\rangle\text{.}
\end{align*}
Furthermore, this operation must satisfy the following axioms.
-
Symmetry.For all \(\boldv, \boldw\in V\) we have\begin{equation*} \langle \boldv, \boldw \rangle =\langle \boldw, \boldv \rangle\text{.} \end{equation*}
-
Linearity.For all \(\boldv, \boldw, \boldu\in V\) and \(c, d\in \R\) we have :\begin{equation*} \langle c\boldv+d\boldw, \boldu \rangle =c \langle \boldv, \boldu \rangle +d \langle \boldw, \boldu \rangle\text{.} \end{equation*}It follows by (i) (symmetry) that\begin{equation*} \langle \boldu, c\boldv+d\boldw \rangle =c \langle \boldu, \boldv \rangle +d \langle \boldu, \boldw \rangle\text{.} \end{equation*}
-
Positive definiteness.For all \(\boldv\in V\) we have\begin{align*} \langle \boldv, \boldv \rangle \amp\geq 0,\text{ and} \amp (\text{positivity})\\ \langle \boldv, \boldv \rangle \amp=0 \text{ if and only if } \boldv=\boldzero \amp (\text{definiteness}) \text{.} \end{align*}
An inner product space is a pair \((V, \langle , \rangle )\text{,}\) where \(V\) is a vector space, and \(\langle , \rangle \) is a choice of inner product on \(V\text{.}\)