Let \(n_i=\dim W_{\lambda_i}\) for all \(1\leq i\leq r\) . We assume that
\begin{equation*}
n=\dim W_{\lambda_1}+
\dim W_{\lambda_2}+\cdots \dim W_{\lambda_r}=n_1+n_2+\cdots +n_r\text{.}
\end{equation*}
For each \(1\leq i\leq n\text{,}\) let
\begin{equation*}
S_{\lambda_i}=\{\boldv_{\lambda_i, 1}, \boldv_{\lambda_i,2},\dots, \boldv_{\lambda_{i,n_i}}\}
\end{equation*}
be a basis of the eigenspace \(W_{\lambda_i}\text{.}\) We claim
\begin{equation*}
B=(\underset{W_{\lambda_1}}{\underbrace{\boldv_{\lambda_1,1},\dots, \boldv_{\lambda_1,n_1}}},\underset{W_{\lambda_2}}{\underbrace{\boldv_{\lambda_2,1},\dots, \boldv_{\lambda_2,n_2}}},\dots, \underset{W_{\lambda_r}}{\underbrace{\boldv_{\lambda_r,1},\dots, \boldv_{\lambda_r,n_r}}} )
\end{equation*}
is an eigenbasis of \(T\text{.}\) Since \(\boldzero\ne \boldv_{\lambda_i, j}\in W_{\lambda_i}\) for all \(1\leq i\leq r\) and \(1\leq j\leq n_i\text{,}\) we see that \(B\) consists of eigenvectors of \(T\text{.}\) Since
\begin{equation*}
n_1+n_2+\cdots n_r=n=\dim V\text{,}
\end{equation*}
to show that \(B\) is a basis it suffices to show that it is linearly independent. To this end, assume we have
\begin{align*}
\boldzero \amp=
\underset{\boldw_{\lambda_1}}{\underbrace{\sum_{j=1}^{n_1}c_{1,j}\boldv_{\lambda_1, j}}} +\underset{\boldw_{\lambda_2}}{\underbrace{\sum_{j=1}^{n_2}c_{2,j}\boldv_{\lambda_2, j}}}+\dots \underset{\boldw_{\lambda_r}}{\underbrace{\sum_{j=1}^{n_r}c_{r,j}\boldv_{\lambda_r, j}}} \\
\amp=\boldw_1+\boldw_2+\cdots +\boldw_r \text{,}
\end{align*}
where for each \(1\leq i\leq r\) we have
\begin{equation*}
\boldw_i=\sum_{i=1}^{n_i}c_{i,j}\boldv_{\lambda_i, j}\in W_{\lambda_k}\text{.}
\end{equation*}
\begin{equation*}
\boldzero=\boldw_i=\sum_{i=1}^{n_i}c_{i,j}\boldv_{\lambda_i, j}
\end{equation*}
for all \(i\text{.}\) Finally, since the set
\begin{equation*}
S_{\lambda_i}=\{\boldv_{\lambda_i, 1}, \boldv_{\lambda_i,2},\dots, \boldv_{\lambda_{i,n_i}}\}
\end{equation*}
is linearly independent for each \(i\text{,}\) we must have \(c_{i,j}=0\) for all \(1\leq i\leq r\) and \(1\leq j\leq n_i\text{.}\) This proves that \(B\) is linearly independent, hence a basis.