By definition
\begin{align*}
\NS T_A \amp=\{\boldx=(x_1,x_2,x_3,x_4)\colon A\boldx=\boldzero\} \text{.}
\end{align*}
Thus we must solve the matrix equation \(A\boldx=\boldzero\text{.}\) The corresponding augmented matrix row reduces to
\begin{equation*}
\begin{amatrix}[rrrr|r] \boxed{1}\amp 2\amp 3\amp 4\amp 0\\ 0\amp 0\amp 0\amp 0\amp 0 \end{amatrix}\text{.}
\end{equation*}
\begin{equation*}
\NS T_A=\{(-2r-3s-4t,r,s,t)\colon r,s,t\in \R\}\text{.}
\end{equation*}
Next, \(\im T_A\) is the set of \(\boldy=(a,b)\) for which there is an \(\boldx\in \R^4\) satisfying \(A\boldx=\boldy\text{.}\) Thus we are asking which choices of \(\boldy=(a,b)\) make the linear system
\begin{equation*}
\begin{linsys}{4}
x_1\amp +\amp 2x_2\amp +\amp 3x_3\amp+\amp 4x_4\amp=\amp a\\
2x_1\amp +\amp 4x_2\amp +\amp 6x_3\amp+\amp 8x_4\amp=\amp b
\end{linsys}
\end{equation*}
consistent. Again, Gaussian elimination gives us our answer. The corresponding augmented matrix row reduces to
\begin{equation*}
\begin{amatrix}[rrrr|r] \boxed{1}\amp 2\amp 3\amp 4\amp a\\ 0\amp 0\amp 0\amp 0 \amp b-a \end{amatrix}\text{,}
\end{equation*}
and conclude from
Procedure 1.3.5 that the system is consistent if and only if
\(a-b=0\text{,}\) or
\(a=b\text{.}\) Thus
\begin{equation*}
\im T_A=\{(a,b)\in \R^2\colon a=b\}=\{(t,t)\colon t\in \R\}\text{.}
\end{equation*}